RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)		
SECOND YEAR [2017-20] B.A. /B.Sc. FOURTH SEMESTER (January – June) 201 Mid-Semester Examination, March 2019	9	
Date : 27/03/2019 MATH FOR INDUSTRIAL CHEMISTRY (General)		
Time : 2pm – 4pm Paper: IV	Full Marks: 25	
(Use a separate Answer Book <u>for each group</u>)		
Group - A		
1. Answer any two questions of the following:	[2×5]	
a) Evaluate $\iint_{R} x^2 y^2 dx dy$, where $R = \left\{ (x, y) : x^2 + y^2 \le 1, x \ge 0, y \ge 0 \right\}$		
b) Express $\int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta d\theta$ in terms of Beta function, mention the restriction on p,q. Also find		
$B\left(\frac{1}{2},\frac{1}{2}\right).$	[2+3]	
$\int_{0}^{\infty} dx$		

c) i) Evaluate (if exists) :
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}.$$
 [2.5]

ii) Test for convergence :
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x(1+x)}}$$
 [2.5]

Group - B

- 2. Answer **any two** questions of the following: [2×5]
 - Find the cubic polynomial which takes the following values: y(1) = 24, y(3) = 120, y(5) =a) 336, and y(7) = 720. Hence obtain the value of y(8). [4+1]

b) For equidistant values $x_i = x_0 + ih$, h > 0, i = 1, 2, 3, ... and $u_i = u(x_i)$, show that $e^{x}\left(u_{0} + x\Delta u_{0} + \frac{x^{2}}{2!}\Delta^{2}u_{0} + ...\right) = u_{0} + u_{1}x + u_{2}\frac{x^{2}}{2!} + ... \text{ where, } \Delta \text{ is the forward difference}$ operator.

From the following table, find the area bounded by the curve f(x) and the x- axis from x = 7.47c) to x = 7.52

X	f(x)
7.47	1.93
7.48	1.95
7.49	1.98
7.50	2.01
7.51	2.03
7.52	2.06

- 3. Answer any <u>one question</u>:
 - a) Solve the differential equation $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 0$

b) Solve the differential equation
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6y = 20e^{-2x}$$

_____ × _____